Crater Name  Location  Latitude  Longitude  Diameter (km)  Age (Ma)  Exposed  Drilled  Target Rock**  Bolide Type***
 Saqqar  Saudi Arabia  N 29°35'  E 38°42'  34  70 - 410  N  Y  S  -


Afifi A. M., Sibon H. J., Rees A. J., and Tourqui H., The discovery of Ediacaran? Redbeds in the basement of the Arabian Platform: GEO-2012, 10th Middle East Geosciences Conference and Exhibition, Bahrain, 2012.>
Al-Hajri S. A., Biostratigraphy of Saqqar-2. Unpublished Aramco Biostratigraphy Report No. 3, 7 p., 1992.
Collins G. S., Melosh H. J., and Marcus R. A., Earth Impact Effects program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science 40:817–840, 2005.
Dorn R. I. and Krinsley D. 2011. Spatial, temporal and geographic considerations of the problem of rock varnish diagenesis. Geomorphology 130:91–99.
Earth Impact Database. 2015. website_05-2018/. Accessed June 20, 2015.
Engelhardt W. V. and Bertsch W., Shock induced planar deformation structures in quartz from the Ries crater, Germany. Contributions to Mineralogy and Petrology 20:203–234, 1969.
Faqira M., Rademakers M., and Afifi A. M., New insights into the Hercynian Orogeny, and their implications for the Paleozoic Hydrocarbon System in the Arabian Plate. GeoArabia 14:199–228, 2009.
Ferrière L., Morrow J. R., Amgaa T., and Koeberl C., Systematic study of universal-stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results. Meteoritics & Planetary Science 44:925–940, 2009.
French B. M. and Koeberl C., The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why. Earth-Science Reviews 98:123–170, 2010.
French B. M., Traces of catastrophe. A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution 954. Houston, Texas: Lunar and Planetary Institute. 120 p., 1998.
Gnos E., Hofmann B. A., Tarabulsi Y., Al Halawani M., Hakeem M., Al Shanti M., Greber N., Holm S., Greenwood R. C., and Ramseyer K., The Wabar impact craters, Saudi Arabia, revisited. Meteoritics & Planetary Science 48:1–15, 2013.
Gnos E., Hofmann B. A., Schmieder M., Al-Wagdani K., Mahjoub A., Solami A. A., Habibullah S. N., Matter A., and Alwmark C., Ash Shutbah: A possible impact structure in Saudi Arabia. Meteoritics & Planetary Science 49:1902–1914, 2014.
Grieve R. A. F., Terrestrial impact—The record in the rocks. Meteoritics 26:175–194, 1991.
Grieve R. A. F., Robertson P. B., and Dence M. R., Constraints on the formation of ring impact structures, based on terrestrial data. In Multiring basins, edited by Schultz P. H. and Merrill R. B. Proceedings Lunar and Planetary Science Conference 12A: 37–57, 1981.
Hergarten S. and Kenkmann T., The number of impact craters on Earth: Any room for further discoveries? Earth and Planetary Science Letters 425:187–192, 2015.
Ivanov B. A., Geomechanical models of impact cratering: Puchezh-Katunki structure. In Large meteorite impacts and planetary evolution, edited by Dressler B. O., Grieve R. A. F., and Sharpton V. L. GSA Special Paper 293. Boulder, Colorado: Geological Society of America. pp. 81–91, 1994.
Johnson B. C. and Bowling T. J., Where have all the craters gone? Earth's bombardment history and the expected terrestrial cratering record. Geology 42:587–590, 2014.
Kenkmann, T., Afifi, A.M., Stewart, S.A., Poelchau, M.H., Cook, D.J., Neville, A.S. Saqqar: A 34 km diameter impact structure in Saudi Arabia. Meteoritics & Planetary Science, pp. 1-16., 2015.
Kenkmann T., Poelchau M. H., and Wulf G., Review article: Structural geology of impact craters. Journal of Structural Geology 62:156–182, 2014.
Kenkmann T., Reimold W. U., Khirfan M., Salameh E., Khoury H., and Konsul K., The complex impact crater Jebel Waqf as Suwwan in Jordan: Effects of target heterogeneity and impact obliquity on central uplift formation. In Large meteorite impacts and planetary evolution IV, edited by Gibson R. L. and Reimold W. U. GSA Special Paper 465. Boulder, Colorado: Geological Society of America. pp. 471–487, 2010.
Kenkmann T. and von Dalwigk I., Radial transpression ridges: A new structural feature of complex impact craters. Meteoritics & Planetary Science 35:1189–1202, 2000.
Konert G., Al-Afifi A. M., Al-Hajri S. A., and Droste H. J., Paleozoic stratigraphy and hydrocarbon habitat of the Arabian plate. GeoArabia 6:407–442, 2001.
Leroux H., Reimold W. U., and Doukhan J. C., A TEM investigation of shock metamorphism in quartz from the Vredefort Dome, South Africa. Tectonophysics 230:223–239, 1994.
Levell B., Richard P., and Hoogendijk F., A possible Albian impact crater at Murshid, southern Oman. GeoArabia 7:721–730, 2002.
Liu C. and Ahrens T. J., Stress wave attenuation in shock-damaged rock. Journal of Geophysical Research 102:5243–5250, 1997.
Mahmoud M. D., Vaslet D., and Husseini M. I., The Lower Silurian Qalibah Formation of Saudi Arabia: An important hydrocarbon source rock. AAPG Bulletin 76:1491–1506, 1992.
Masaitis V. L. and Pevzner L. A., Deep drilling in the impact structure: Puchezh-Katunki, Russia. St. Petersburg, Russia: All-Russia Geological Research Institute (VSEGEI) Press. 392 p, 1999.
Meissner C. R. Jr., Dini S. M., Farasani A. M., Riddler G. P., Smith G. H., Griffin M. B., and vanEck M., Preliminary geologic map of the Thaniyat Turayf Quadrangle, Sheet 29C, Kingdom of Saudi Arabia, Open File Report USGS-OF-08-5, Ministry of Petroleum and Mineral Resources. 35 p, 1989.
Neville A. S., Cook D. J., Afifi A. M., and Stewart S. A., Five buried crater structures imaged on reflection seismic data in Saudi Arabia. GeoArabia 19:17–44, 2014.
Öhman T., Aittola M., Kostama V. P., Raitala J., and Korteniemi J., Polygonal impact craters in Argyre region, Mars: Implications for geology and cratering mechanics. Meteoritics & Planetary Science 43:1605–1628, 2008.
Poelchau M. H. and Kenkmann T., Feather features: A low-shock-pressure indicator in quartz. Journal of Geophysical Research: Solid Earth 116:B02201, 2011.
Poelchau M. H., Kenkmann T., and Kring D. A., Rim uplift and crater shape in Meteor Crater: Effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research 114:E01006, 2009.
Powers R. W., Ramirez L. F., Redmond C. D., and Elberg E. L., Geology of the Arabian Peninsula: Sedimentary geology of Saudi Arabia. U.S. Geological Survey, Professional Paper 560D:147, 1966.
Prescott J. R., Robertson G. B., Shoemaker C., Shoemaker E. M., and Wynn J., Luminescence dating of the Wabar meteorite craters, Saudi Arabia. Journal of Geophysical Research: Planets 109:E01008, 2004.
Salameh E., Khoury H., Reimold W. U., and Schneider W., First large meteorite impact structure discovered in the Middle East: Jebel Waqf as Suwwan, Jordan. Meteoritics & Planetary Science 43:1681–1690, 2008.
Schmidt R. M. and Housen K. R., Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering 5:543–560, 1987.
Schmieder M., Buchner E., Hofmann B. A., and Gnos E., The Ash Shutbah circular feature—A suspected meteorite impact site in Saudi Arabia (abstract). The First Arab Impact Cratering and Astrogeology Conference (AICAC), Amman, Jordan. pp. 84–85, 2009.
Shoemaker E. M. and Wynn J. C., Geology of the Wabar meteorite craters, Saudi Arabia (abstract #1660). 28th Lunar and Planetary Science Conference. CD-ROM. 1997.
Stewart S. A., Circular geological structures outcropping in the sedimentary basins of Saudi Arabia. Journal of Asian Earth Sciences 106:95–118, 2015.
Stewart S. A., Estimates of yet-to-find impact crater population on Earth. Journal of the Geological Society London 168:1–14, 2011.
Stöffler D. and Langenhorst F. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181, 1994.
Turtle E. P., Pierazzo E., Collins G. S., Melosh H. J., Morgan J. V., and Reimold W. U., Impact structures: What does crater diameter mean? In Large meteorite impacts III, edited by Kenkmann T., Hörz F. and Deutsch A. GSA Special Paper 384. Boulder, Colorado: Geological Society of America. pp. 1–24, 2005.
Underwood J. R., Al Umchaimin depression, western Iraq: An impact structure? In Large meteorite impacts and planetary evolution, edited by Dressler B. O., Grieve R. A., F., and Sharpton V. L. GSA Special Paper 293. Boulder, Colorado: Geological Society of America. pp. 259–264, 1992.
Wallace C. A., Dini S. M., and Al-Farasani A. A., Geologic map of the Thaniyat Turayf Quadrangle, Sheet 29C, Kingdom of Saudi Arabia. Ministry of Petroleum and Mineral resources, Saudi Geological Survey, 2000.
Wünnemann K. and Ivanov B. A., Numerical modelling of the impact crater depth–diameter dependence in an acoustically fluidized target. Planetary and Space Science 51:831–845, 2003.
Wynn J., Mapping an iron-meteorite impact site with a magnetometer, and implications for the probability of catastrophic impact on Earth. Journal of Environmental and Engineering Geophysics 7:143–150, 2002.
* pre-1977 K-Ar, Ar-Ar and Rb-Sr ages recalculated using the decay constants of Steiger and Jager (1977) Ages in millions of years (Ma) before present.

** Abbreviations: C - Crystalline Target; C-Ms - Metasedimentary Target; M - Mixed Target (i.e.sedimentary strata overlying crystalline basement); S - sedimentary target (i.e. no crystalline rocks affected by the impact event). From Osinski. G. R., Spray J. G., and Grieve R. A. F. 2007. Impact melting in sedimentary target rocks: A synthesis. In The Sedimentary Record of Meteorite Impacts, Geological Society of America Special Paper. Editors: Evans K. Horton W., King D., Morrow J., and Warme J. Geological Society of America: Boulder, in press.

***From Koeberl,C. Identification of meteoritic components in impactites. 1998, Koeberl, C. The Geochemistry and Cosmochemistry of Impacts. 2007 and PASSC Files. (IAB, IIIAB, IIIB, IIID - Iron Meteorite)